500=2.2v+v^2/20

Simple and best practice solution for 500=2.2v+v^2/20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 500=2.2v+v^2/20 equation:



500=2.2v+v^2/20
We move all terms to the left:
500-(2.2v+v^2/20)=0
We get rid of parentheses
-v^2/20-2.2v+500=0
We multiply all the terms by the denominator
-v^2-(2.2v)*20+500*20=0
We add all the numbers together, and all the variables
-v^2-(+2.2v)*20+500*20=0
We add all the numbers together, and all the variables
-1v^2-(+2.2v)*20+10000=0
We multiply parentheses
-1v^2-40v+10000=0
a = -1; b = -40; c = +10000;
Δ = b2-4ac
Δ = -402-4·(-1)·10000
Δ = 41600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{41600}=\sqrt{1600*26}=\sqrt{1600}*\sqrt{26}=40\sqrt{26}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40\sqrt{26}}{2*-1}=\frac{40-40\sqrt{26}}{-2} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40\sqrt{26}}{2*-1}=\frac{40+40\sqrt{26}}{-2} $

See similar equations:

| 56+m1+62=180 | | 10+(x+1)-6=2(x+3)-10 | | 7=4(3+y) | | Z/3+z/5=40 | | -6x=3=2(x-2)+3 | | x2+14x+1=0 | | 44+53+m1=180 | | 3.5/6=10/x | | 37+124+m1=90 | | 37+124+m1=180 | | -6x+3=2(x-2)+3 | | 124+37+m1=90 | | 3x^2-25=275 | | 124+37+m1=180 | | -6+3=2(x-2)+3 | | 8^r=63 | | 3z-9÷-5=-2 | | O.8x+4=0.3x+3.5 | | 2(×+9)+5(x+2)=35 | | 6+(x-1)=3x-2 | | 0.8x+4=0.3×+3.5 | | -8+x+2x=-41 | | 20=4x^2+1 | | 20=4z^2+1 | | -97=-6x-3x-7 | | 50q-43=50q-81 | | -0.5x=1.7 | | 13=s+7 | | 46+m1=180 | | -6x+2=2x+98 | | 3x-x=1.16 | | 45+6x+1=4x-6 |

Equations solver categories